Robotics With the XBC

Controller
Session 4

Instructor: David
Culp

Email:
culpd@cfbisd.edu

mailto:culpd@cfbisd.edu

Learning Goals

m The student will learn about
functions and modular

programming, using the IC

preprocessor, reading XBC buttons
and Botball functions.

Review

m if-then, statements

mLoops ...
= while

m for-next
e for (count = 100; count >=10; count-=10)

Review Contil nue

m Variables

m Four main types
e Iint
* long
 float
e char

s Must have a name
» Letters, numbers and underscore allowed
e Must begin with a letter or the underscore

m Must be declared before use

m Local variables have precedence over global
variables

Analog sensors

m Return a range of values

m Use the analog and analogl12 functions to
access.

m Cannot use analog port #7

s Battery voltage monitor

m power_level() function returns the current
battery voltage as a float.

mPorts O and 1 are “flo
with the IR range finder.

A short revi ew

void main()

{
float batt;

int power;

while ('b_button())
{

batt= power_level();
display_clear();

printf("Battery Voltage: %f", batt);
sleep(.1);

A short review assignment

mModi fy the program so
button is pressed the program enters a
for-next loop.

m The loop counts from —100 to 100 in
increments of 5 and sets the power of the
left and right motors to this value.

m There is a .1 second pause at the bottom
of the loop.

m Turn your motors off after the loop is
done.

void main()
{
float batt;
int power;

while (1b_button())
{
batt= power_level();
display_clear();
printf("Battery Voltage: %f", batt);
sleep(.1);

§

for (power = -100; power <=100; power +=5)
{

motor(0,power);

motor(2,power);

sleep(.1);

i

ao();

Functions in C

m A function is a separate block of code
with a unique name that does a particular
job.

m Functions let you chop up a long program
into named sections.

m Functions can accept parameters and
can return a result.

m All code belonging to a function is
contained in curly braces {}.

m We have already been using them!!

A very simpl e e

void main()

{
print_hello();

y

void print_hello()

{
display_clear();

printf("Hello!!\n");
return;

»

10

Tt oiHs HTTHdhetiiinialaiinie

m The function hadaname-“pr i nt _he
m Function names follow the same rules as
variable names.
m The void means the function will not
return a value.

m All the code belonging to the function was
contained in curly braces.

m The return keyword tells the function to
go back to where it came from. It was
optional in this case but enhances
readability.

11

Returning a value and
accepting parameters.

void main()

{
int a=10;
int b=20;

printf("Result = %d", add_two_numbers(a,b));
b

int add_two_numbers(int num1, int num?2)

{

return numl+num?2;

» 12

Tt oiHs HTTHdhetiiinialaiinie

m The function definition:
int add_two_numbers(int num1, int num2)

m The preceding int means the function will return an int
value.

m The parameter definitions:
(int num1, int num2)

s Tells the compiler that this function accepts two int
paramters called num1 and num2.

s We can access those parameters by name.
s Parameters are local to the function.

m The return keyword returns the desired value back to the
caller. It MUST appear in any function that returns a
value.

m A function may return one and only one value.
13

Why use functions?

m Functions increase the readability
and portability of your programs.

m Allows much easier debugging.
m Allows you to reuse your code.
m Can shorten your overall program.

14

A short assignment

m Write a short program that has a
function called square that accepts
an integer number and returns an
integer number which is the
parameter squared.

m Print the result on the Gameboy
screen.

15

Possible solution:

void main()

{

int a=10;

printf("%d\n", square(a));
g

int square(int num)

{

return (num * num);

»

16

Another short assignment

m Start a new program and write four
functions called forward, back, left and
right.

m These functions accept an int number
which is the power level to set your
motors to.

m They return no value.

m Use the functions to cause your robot to
move around in any way you choose.

17

Getting started on the
assli gnment

void main()

{

Your control code;

y

void forward(int power)

{

motor(0,power);
motor(2,power);

»

Ot her functions will go her

The IC preprocessor

m The preprocessor processes an IC
file before it is sent to the compiler.

m Allows us to include functions from
other files and allows us to define
preprocessor macros.

m Can make our code more efficient
and much easier to read.

19

Including another IC file

m To bring in the functions from

anot her | C fi1 |l e uUse
of the file.
sExample: #use “botbal

* Brings in all the functions and variables
defi ned I n the file “Dbo

20

A practical example of #use

mStart a nhew | C fi1]l e ca

m Take all of your motor control functions
and cut them from your last program.

m Paste these motor control functions into
the new source file and save it.

m At the top of your ORIGINAL program
place the statement #use
“motorcontrol .1 c

m Download and run the program.

m The program should bring in
motorcontrol.ic and run normally.

at t

21

Wh a't |t

#use "motorcontrol.ic"

void main()

{
forward(100);

sleep(3.0);

ao();
printf("Done");

s houl

d

22

#define statements..

#define statements allow us define preprocessor macros.
A macro is local to the file in which it is defined
Essentially it sets one item equal to something.

Unlike variables they CANNOT be changed later.

Before the program is compiled the preprocessor replaces
every instance of a macro name with its value.

m Examples:
m #define L 2

cEverywhere the word “L"” appe
program file will get replaced with the number 2 just
before downloading.

m #defineRO

cEverywhere the word “R” appe
program file will get replaced with the number 0 just
before downloading. x

The power of #define

m Allows you to set commonly used values
to easily read statements.

m Allows MUCH easier debugging as the
program is easier to read.

m Allows easy software changes.

m #define macro names are normally ALL
CAPITALS. This is not required but easily
distinguishes them from variables and
makes your code easy to read.

24

A

#d
#d

#C

n exampl e

efine L 2
efine R 0
efine DELAY 3.5

void main()

{

motor(L, 100);
motor(R, 100);
sleep(DELAY);

ao();

25

A More Complex Example

#define ST 100
#define MAX 250
// This tests the function "adjust" which can be used to adjust parameters
void main()
{
int speed=ST,speed_f;
display_clear();
printf("Speed = parameter to adjust");
speed_f=adjust(1,speed,MAX);
display_set_xy(0,4);
printf("Final Speed= %d",speed_f);
b

int adjust(int y, int i, int m){ //uses direction pad to adjust 0 <i < m
//print at line y, i = variable parameter to adjust, m = max value;

while(!a_button()){// press A to finish
display_set_xy(0, y);
%f'ir_\)tf("parameter=°/od, \n adjust w. Right-Left PAD\n press A to
end",i);
if(left_button()&& i>=5) i-=5;
if(right_button()&& i< m)i+=5;
sleep(.2);
b

return i; 26

Bot bal | Functi o

m To use functions specifically designed for
Bot bal | #use “Botball
your program.

B TWO main functions:

s wait_for_light(int port)

* Allows us to calibrate a light sensor on port and the
robot will wait until the starting light turns on to
begin execution

s shut_down_in (float seconds)

« The IC program downloaded will run for the
specified number of seconds and then shut down all
motor control and end the program.

27

A Typical Botball Program

#use "botball.ic"

#define L 2
#define R 0
#define LIGHT 5

void main()

{
wait_for_light(LIGHT);
shut_down_in(89.9);

play_botball();
b

void play_botball()
{

¥

28

Reading XBC buttons

m Reading XBC buttons is very simple.

m Each function returns O if NOT pressed
and 1 if pressed.
= int a_button()

int b_button()

int up_button()

int down__button()

int right_button()

int left_button()

int r_button() — The top right button

int |_button() — The top left button

int any_button() 29

Your assignment

m In the last session we modified our demo-
bot by adding IR range sensors.

m Modify your bumper-bot program so that
you use functions and the pre-processor.

s Make four motor control functions and place
them in a separate file called

“motor _control .1 c”.
m Include (#use) this file at the top of your
program.

m Use the preprocessor to #define macros for
the left and right motor and the left and right
IR sensor. You may also make a #define for

the mini mum “hit?” di st an (

To Hel p You Get

#use "motor_control.ic"
#define LEFT_SENSOR 1
#define MIN_RANGE 200

void main()

{
while(1)

{

do stuff in here;

i
¥

31

motor_ control.ic

#define LEFT_MOTOR 2
#define RIGHT_MOTOR 0

void forward()

1
fd(LEFT_MOTOR);

fd(RIGHT_MOTOR);
¥

32

